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ABSTRACT 
 

When animals occur in groups, biases in mean group size estimates bias 
abundance estimates using conventional line transect methods. Multivariate models for 
bias correction of mean group size and for detection function analysis in conventional 
line transect are reviewed, developed and tested. Standard bias-correction methods, based 
on a least squares analysis of the observed log-transformed group sizes against estimated 
detection probability, tend to underestimate mean group size when outliers are present. In 
contrast, robust regression improves mean group size and abundance estimates when the 
association of perpendicular distances with other covariates is linear. Parametric and 
nonparametric multivariate detection function models incorporated into line transect 
abundance estimators provide substantial improvement in estimating mean group size and 
abundance. Under the assumption of perfect detection in the transect line, g(0)=1, the 
flexibility of multivariate models to fit the detection function near 0 is critical to obtain 
unbiased abundance estimates. Nonparametric methods usually have a poor fit of the 
short perpendicular distances and produce less precise estimates as the number of 
covariates increases. Thus, there is a need for better smoothing algorithms and also for an 
objective covariate selection to improve abundance estimates. Parametric methods, 
allowing for objective model selection and averaging, provide the best trade-off of bias 
and precision, and produce more reliable estimates of abundance and its variability when 
sample size is not low. 
 

INTRODUCTION 
 

Conventional line transect sampling is commonly used to estimate abundance, a 
quantity of fundamental interest in ecological studies. Given a study area and survey 
design, the main data are right angle distances to objects detected along a transect line. 
The term conventional applies when detection of objects directly on the line is assumed 
perfect, and many studies rely on this assumption. When detected objects are groups, the 
analysis proceeds by estimating the effective sampling distance on each side of the line, 
and density is the product of the inverse of this estimate, the groups encounter rate and 
the mean group size (Buckland et al., 2001). This analysis, however, can be problematic 
when group size is highly variable. 

 
Sampling wildlife populations, large groups provide more visible cues and are 

detected at larger perpendicular distances than small groups. This causes a selection bias 
in the observed group size distribution, and the estimated mean is unrepresentative of the 
true mean group size in the survey area. Moreover, the detection of these groups is 
usually a heterogeneous process, significantly affected by sighting conditions, observers 
training and behavior, the changing environment, and occurrence in mixed-species 
groups. For instance, a small single-species group within a larger mixed-species group is 
easier to detect than it otherwise might be. Typical examples are multispecies 
aggregations of African ungulates, schooling fish, or oceanic dolphins. Under these 
conditions, heterogeneity may not be accounted for by conventional methods, based on 
perpendicular distance models only. In this paper, I consider methods for size-dependent 
detection accounting for multiple covariates in the estimation of density, abundance and 
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expected group size. I illustrate the methods with an example and simulate data to test 
and compare the performance of the proposed and other available methods. 

 
The problem of size-dependent detection has been addressed with linear 

regression methods (Buckland et al., 2001). Modeling the loge of the observed group size 
as a function of detection probabilities, the expected group size can be predicted at the 
transect line where detection is assumed perfect. I extend this method to account for 
multiple covariates affecting the group size distribution and I develop a more general 
estimator to account for mixed-species groups. Further, I cast the estimator into a robust-
regression context, resistant to outlier effects and non-Gaussian error distribution. 

 
Size-dependent detection has also been addressed with bivariate detection 

functions (e.g., Drummer and McDonald, 1987; Quang, 1991; Chen, 1996). The detection 
probability is estimated by modeling the conditional distribution function of 
perpendicular distances and group sizes. The estimated bivariate density function 
evaluated at 0 is then multiplied by the expected group size and the observed sighting 
rates to estimate density. The generalization of this method, incorporating multiple 
covariates in the detection function, reduces heterogeneity and deals with size-dependent 
detection simultaneously. The new estimation framework allows for parametric and 
nonparametric detection functions, and I propose and test suitable estimators for each 
case. 

 
I investigate the new methods with line transect data of the eastern spinner 

(Stenella longirostris orientalis) dolphin stock in the eastern tropical Pacific Ocean 
(ETP). The U.S. National Marine Fisheries Service collected the data during the period 
1998-2000 as part of the studies directed by the 1997 International Dolphin Conservation 
Program Act (IDCPA, 16 U.S. Code 1414), an amendment to the Marine Mammal 
Protection Act (MMPA, 16 U.S. Code 1361 et seq). This law required studies to 
determine if the chase and encirclement of dolphins in the purse-seine fishery for yellow 
fin tuna in the ETP is having a significant adverse impact on depleted dolphin stocks, and 
line transect abundance estimates of dolphin stocks were an integral part of the studies 
mandated by the U.S. Congress. The affected dolphin stocks are distributed in mixed-
species schools ranging in size from a few individuals to thousands of animals, and have 
a unique association with yellow fin tuna and seabirds (Perrin, 1969). Thus, the detection 
process is significantly influenced by the size of schools, detection cues and inter-specific 
associations. In this paper, only a sub sample of the data is analyzed to illustrate the 
methods presented. The analysis of the complete data set will be presented elsewhere. 

 
Reviewers from the Center for Independent Experts provided an independent peer 

review of this work.  Responses to reviewers’ comments can be found in Appendix A. 
 

UNIVARIATE LINE TRANSECT ANALYSIS 
 

In conventional methods, transect lines are defined to have an arbitrary maximum 
strip width W. Objects observed beyond W are either ignored or discarded for the purpose 
of density estimation. Given W and L, a transect line of known length, the area surveyed 
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is  and contains a number of objects N2wa L= W w. By assumption, Nw is a random 
variable with expectation 2LWD, and D, density, is the number of objects per unit area. 
Any object within aw is located at a right angle (perpendicular) distance Y from the 
transect line, and Y is assumed uniform I(0, W). Objects in the strip W are observed with 
unconditional probability 

 
0

1 1( ) µ= =∫
W

W W
P g y dy  

(Seber, 1982; Burnham and Anderson, 1976), where g(y) is the probability that an object 
is detected given that it is at an observed perpendicular distance y. The expected number 
of detected objects is 
 ( ) ( ) 2WE n E N P LDµ= =  
and density of objects is estimated as 

 ˆ .
ˆ2

nD
Lµ

=  (1) 

Detection of objects on the transect line is assumed certain, i.e. g(0)=1, and µ, known as 
the effective strip half-width, is estimated as 1ˆ (0)−f , the inverse of the probability 
density (pdf) of observed perpendicular distances y evaluated at 0. When detected objects 
are groups, density of individuals is estimated as 

 
ˆˆ ( ) (0)ˆ

2ind
E s n fD

L
= , (2) 

where is the expected mean group size. In practice,  is replaced by an estimate 
of mean group size, assuming that it is independent of the density of observed and 
unobserved groups. Alternatively, under the same assumptions, a size-bias corrected 

 is estimated by linear modeling of the log

ˆ ( )E s ˆ ( )E s

ˆ ( )E s e of the observed group size and detection 
probability, ˆˆ log ( ) ( )ez s g yα β= = +  (Buckland et al., 2001, p. 74-75). Conditional on the 

regression slope (β) being significant,  is predicted at the transect line where 
 

ˆ ( )E s
ˆ (0)g 1=

 ˆ ˆvar( ) 2ˆ ( ) α β+ += zE s e  (3) 
where 

 ( )
1

22 1 2

1

ˆ ˆ ˆˆ( ) 1 (1 ) ( )εσ
−

−

=

  = + + − −  
   
∑

n

i
i

var z n g g y g , (4) 

2ˆεσ is the residual mean square, and 1 ˆ ( )i
n

g n g y−= ∑ . Coefficients α  and β are estimated 

with the least-squares (LS) method. 
 
Robust-regression estimator of  ˆ ( )E s
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 The loge of the total group size T, in terms of group size (s) and proportion (r) of 
the species of interest, T s , is regressed against g(y) and a vector of l additional 

covariates, 

1−= r

1

l

e
j

log ( )z T j jxα β
=

+∑= = . The expected group size is estimated as 

 
ˆ ˆva ( )

21

1

ˆ ( )

l

j ij
j i

r zxn

i
i

E s n r e
α β

=

  + + 
 − 

=

∑
= ∑   (5) 

with 

 { } 12 1 ' 'ˆ ˆ ˆva r(z) 1 n (x ) (X ) X (x )εσ
−− + + + + = + +  

, (6) 

where X is the matrix of covariate values, the prime denotes transpose, and X+ is the 
matrix of centered (mean corrected) covariates. If total group size (T) depends on g(y) 
only, Eq. 5 becomes 

 ˆ ˆ1 va

1

ˆ ( ) α β− + +

=

= ∑
n

z
i

i
E s n r e r( ) 2  (7) 

and  is estimated as in Eq. 4. ˆ ˆvar( )z
The variance of  is ˆ ( )E s

 { } { }

2
ˆ ˆvar( ) / 2

1

1

ˆ ˆˆvar ( ) ( 1) ( )

l

j ij
j i

x zn

i i
i

E s R n r re E s
α β

=

  + + 
−   

=

 ∑ = − − 
  

∑ , 

where iR r=∑ , and  is assumed independent of density of groups.  ˆ ( )E s
 

Detections of groups located in the same transect are likely to be interdependent 
and the empirical variance estimate will likely be biased in those cases. More reliable 
variance and confidence intervals can be estimated with a nonparametric bootstrap 
resampling from multiple transects, provided that transects are independent (Buckland et 
al., 2001). Resampling detected groups by transect with replacement allows for an 
estimate of in each of B bootstrap replicates. ˆ ( )E s { }ˆˆvar ( )E s is then the variance of the B 

replicates. 
 
Estimation method. Coefficients α  and βj in Eqs. 3, 5 and 7 can be estimated 

with the LS method, assuming that the loge transformation of group size makes the data 
linear with normally distributed errors. However, datasets with highly variable group 
sizes contain significant outliers with strong influence on the LS fit, and robust regression 
is likely to produce more reliable  estimates. I choose the MM robust regression 
method of Yohai et al. (1991) because: i) the model fit is minimally influenced by 
outliers in the response and predictors’ space; ii) the fit minimizes the bias in coefficients 
estimates due to non-Gaussian errors; and iii) statistical inference is based on large 
sample size approximations and is comparable to that obtained with the LS method.  

ˆ ( )E s
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Given a linear model with the general form β ε= +T
i is x i , a robust M-estimate 

(Yohai et al., 1991) of β̂  is obtained by minimization of 

 
1

ˆ
;ˆ

βρ
=

 −
  
 

∑
Tn

i i

i

s x c
S

, 

where (., )cρ  is a convex weight function (e.g. ρ =-log f, where f is a density function) 
with , a robust scale estimate of the residuals. Because this minimization can have 
multiple results, an initial estimate 

Ŝ
0β̂  is obtained from a robust regression S-estimate 

(Rousseeuw and Yohai, 1984). 0β̂  is the value minimizing the robust scale estimate 
ˆ(S )β in the linear model 

 
1

ˆ1 0.5ˆ( )
βρ

β=

 −  = −   
∑

Tn
i i

i

s x
n q S

, 

and 0β̂  is used as a local minimum of the (., )cρ  function of the M-estimator to compute 
the final estimate 1β̂ , and q are the smallest squared residuals. 
 

Yohai et al. (1991) developed a test for bias of the final M-estimate and a LS 
estimate against the initial S-estimate. If the test is significant for the M and LS estimates, 
inference with these methods will be biased. Thus, when analyzing a data set, the test for 
bias of the M-estimate should be used and, if not significant, check for a significant 
regression slope. With a significant slope, use the 1β̂  estimates to compute . If the 
M-estimate is biased but the LS-estimate is not, the LS-estimate should be used if the 
corresponding slope is significant. Otherwise, use the observed mean group size. 

ˆ ( )E s

 
 Covariates explaining significant variation of can be included objectively in 
the model according to the smallest RFPE (Robust Final Prediction Error) of Yohai (cf 
MathSoft Inc., 1999, p. 287) 

ˆ ( )E s

 
* 1

1

β̂ρ
ρ=

  − =       
∑

Tn
i i

i

s xRFPE E , 

where are the predicted values using the final M-estimate, *
is 1β̂ . This statistic can be 

used as the Akaike’s Information Criterion (AIC) (Akaike, 1973), and thus an efficient 
bootstrap algorithm to estimate the variance of can include covariate selection and 
test for bias on each replicate. 

ˆ ( )E s

 
MULTIVARIATE LINE TRANSECT ANALYSIS 

 
The multivariate detection function ( , )g y c  is defined as the conditional 

probability of sighting a group given its perpendicular distance y from the transect line, 
and c , a vector with its size and additional covariates. Since transect lines are allocated 
randomly in the survey area, perpendicular distances are assumed independent of group 
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size and other covariates. With Y assumed uniform I(0, W), the underlying joint 
distribution function ( , )f y c  is 
 1( , ) ( ) ( ) ( )f y c f y f c W f c−= = , 
and the probability that a group is detected and has size and additional covariates c  is 
 1( , ) ( )g y c W f c− . 
Similar to the univariate case, the unconditional probability of detecting a group is 
 1( , ) ( , ) ( , ) ( )

W W
P g y c f y c dydc W g y c f c dydc−= =∫∫ ∫∫ , 

so that the joint pdf of observed perpendicular distances and group size and additional 
covariates is 

 ( , ) ( )( , )
( , ) ( )

W

g y c f cf y c
g y c f c dydc

=
∫∫

. 

This function, similarly derived by Drummer and McDonald (1987) and Quang (1993) 
for the bivariate case ( c s= ), and by Borchers et al. (1998) and Chen (1999) for multiple 
covariates, requires the assumption of a certain form for ( )f c . Thus, it is better to use a 
conditional pdf of y given c , 

 
0

( , ) ( , )( | )
( )( , )

W
g y c g y cf y c

cg y c dy µ
= =
∫

, (8) 

justified by the theory of weighted distributions (Patil and Ord, 1976), where ( )cµ  is the 
effective strip half-width given covariates c .  
 
 Assuming perfect detection on the transect line, the conditional pdf can be 
evaluated at 0 to estimate ( )cµ  

 1(0 | )(0 | ) ( )
( )

g cf c
c

µ
µ

c −= = . (9) 

A mean estimate of ˆ (0)f  is obtained as 

 
1 1

1 1 1ˆ (0) (0 | )
i

n n

i
i ic

ˆf f c
n nµ= =

= =∑ ∑ , (10) 

so that, from Eq. 1, density of groups can be estimated as 

 1

ˆ (0 | )
ˆ

2

n

i
i

f c
D

L
==
∑

. (11) 

Density of individuals can be derived from Eqs. 2 and 10,  

 1

ˆˆ ( ) (0 | )
ˆ

2

n

i
i

ind

E s f c
D

L
==
∑

, (12) 

and  can be estimated as in Eqs. 5 or 7. Otherwise, using a moments approximation 
of  in Eq. 2, 

ˆ ( )E s
ˆ ( )E s
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1

1

ˆˆ (0)(0)
ˆ

2 2

=

== =

∑
∑

n

ni
i

i
i

ind

s
f sn f

nD
L L

. 

 
Under the multivariate case there is an independent ( ic )µ  for each detection, 

given its size and additional covariate values, and it can be shown that 

 1

ˆ (0 | )
ˆ

2

n

ii
i

ind

f c s
D

L
==
∑

. (13) 

Abundance of individuals is then estimated as , ˆ ˆ=N A D

 1

ˆ (0 | )
ˆ

2

n

ii
i

f c s
N A

L
==
∑

 (14) 

where A is the size of the surveyed area. Equations 13 and 14 are justified assuming a 
Horwitz-Thompson Line Transect estimator (Borchers et al., 1998; Marques, 2001). 
 

From Eqs.11 and 13, an unbiased estimate of  is obtained as a weighted 
average of the observed group sizes s

ˆ ( )E s
i, using the estimated effective strip half-width at 

each sighting as weight 

  1

1

ˆ (0 | )ˆˆ ( ) ˆ ˆ (0 | )

n

ii
ind i

n

i
i

f c s
DE s
D f c

=

=

= =
∑

∑
. (15) 

 
Parametric estimation  
 

Group size and additional covariates can be included in the detection function as 
part of the scale and/or the shape parameter. In practice, the most efficient approach is 
through the scale parameter only, as in the bivariate exponential models of Drummer and 
McDonald (1987) and the multivariate exponential power series of Ramsey et al. (1987). 
Palka (1993) proposed a similar bivariate log-linear modeling of the scale parameter for 
the hazard rate function of Hayes and Buckland (1983), and here it is extended to account 
for multiple covariates in different models. The scale parameter is formulated as, 

 , (16) 1

log ( )
t

i e i
i

c

e
α α

ϕ =

+∑
=

with covariates having multiplicative effects, or additive effects in the loge scale. This 
parameterization allows for factors with several levels, continuous covariates with linear 
or quadratic effects such as group size, and interaction terms. ϕ  was included in four 
detection functions: Pollock’s (1978) exponential power series 

  ( , )

b
y

g y c e ϕ
 

− 
 = , 
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with the half-normal (Quinn and Gallucci, 1980) 

2
1
2( , )

y

g y c e ϕ
 

−  
 =  and the negative 

exponential model ( , )
y

g y c e ϕ
 

− 
 =  as special cases, and the hazard rate model (Hayes and 

Buckland, 1983) 

 ( , ) 1

b
y

g y c e ϕ

−
 

− 
 = − . 

In general, any suitable detection function including a scale parameter and meeting the 
“shape” criterion of Burnham et al. (1980) can be considered in this context. In this 
regard, the negative exponential will seldom be a good model. 
 

A different approach, perhaps more flexible with sufficient sample size, is with 
semi-parametric models including expansion series (e.g. polynomial or cosine functions), 
to add further structure to the detection curves (Marques, 2001). In this paper I only 
explore simple parametric models. 

 
Estimation and inference method. For a given parametric detection function 

( , )g y c , ˆ ( | )f y c  can be estimated with maximum likelihood methods 

 
1

0

( , )
( ; , )

( , )
θ

=

=∏
∫

n
i i

W
i i

g y c
y c

g y c dy
L , 

where θ are the parameters of the detection function. Parameter estimates are obtained 
by maximizing the conditional likelihood function, using the Newton method or 
approximations, like the quasi-Newton algorithm used in the example analyses, and 
standard errors can be obtained from the inverse of the Hessian matrix ˆ( )θH . 
 

From a series of candidate models, the most adequate parametric fit, including 
sequential selection of explanatory covariates can be based on the AIC (Akaike, 1973) or 
the modified AICc for small samples of Hurvich and Tsai (1995), 

 { } ( 1)2 log ( ; , ) 2
1c

k kAIC y c k
n k

θ +
= − + +

− −
L , 

where k is the number of parameters and n is the sample size. The simple AIC tends to 
favor the overfit, whereas the AICc penalizes an increased number of parameters relative 
to sample size, and performs better with small and non-small sample sizes (Burnham and 
Anderson, 1998). 
 

A suite of candidate models may have similar good abilities to describe the data, 
and there is no need to assume that a single model is superior. A flexible approach to 
account for model selection uncertainty is model averaging (Buckland et al., 1997) based 
on AIC weights. For M candidate models, the weight for model Mi is 

 
0.5 |

0.5

1

c i

ci

-  AIC M

c i M
- AIC

i

eAIC w   = 
e

∆

∆

=
∑

, 
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and  is the difference in AICcAIC∆ c from a particular model (model Mi) with respect to 
the model with lowest AICc. An average estimate is obtained as 

 . ˆ ˆ(0 | ) (0 | )
M

c i i
i=1

Ave f c   =  AIC w f c  ∑
 
Nonparametric estimation 
 

Conditional density functions can be estimated with kernel smoothers. I adapt 
Chen’s (1999) global multivariate kernel smoother estimator to conventional line transect 
analysis. The conditional density function is  

 
1

1ˆ ( | ) ( )
n

i
i

i

y yf y c K Z c
nh h=

− =  
 

∑f , (17) 

where h is the smoothing bandwidth, K is a kernel function (e.g., a Gaussian kernel, 
21 / 2( ) 2 yK y eπ

− −= ), and ( )iZ c  is the weight contributed by the covariates at each 
observed detection ( , )i iy c , 

 1

1 1

( )

m
j ij

j j
i mn

j ij

i j j

c c
K

b
Z c

c c
K

b

=

= =

 −
  
=
 −
  
 

∏

∑∏
 , (18) 

where the same kernel is used for each of the m covariates, but each covariate has a 
different smoothing bandwidth, . Ideally, signed y values (i.e., the sign indicates the 
side of the transect line) should be used to avoid end effects (Silverman, 1986) at 
perpendicular distance 0. Otherwise, distances and additional covariates can be reflected 
and sampled about an endpoint t. Density is then computed for the sample (y, 2t-y) and 
doubled at [t,W], or at [t,∞ ), because kernel smoothers do not necessarily require a 
truncation distance. Since K is symmetrical about t=0, the

mb

1( )icµ −  can be estimated as 

 
1

2ˆ (0 | ) ( )
n

i
ii

i

yf c K Z
nh h=

 =  
 

∑ cf , (19) 

reflecting the covariate values also. That is, for each covariate cj, that data becomes 

 j ij j ij

j j

c c c c
K K

b b
  − +

+    
  





. 

 
Optimal bandwidths can be obtained minimizing the mean integrated squared 

error (MISE) of f̂ , 

 { }2ˆ ˆ( , , ) ( , ) ( , )= −∫mMISE f h b E f y c f y c dydc . 

Estimates of h and bm minimizing the MISE are typically obtained by cross-validation or 
by reference to a standard distribution, usually { }2( | ) 0, ( )σ→f y c N c . 
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The normal approximation is less computationally involved and performs well if 
the assumed distribution is close to the underlying distribution. Thus, a simple solution is 
to use a multidimensional approach (Scott, 1992) to estimate the smoothing parameters 

, where d is the number of dimensions and σ{ }
1( 4)14 ( 2)

d

i ih d nσ
−+−= + i the standard 

deviation in dimension i, which is replaced by a sample estimate for practical 
implementation. 

 
VARIANCE AND CONFIDENCE INTERVAL ESTIMATION 

 
 Analytical variances of D and  using univariate or multivariate detection 
functions can be approximated with the Delta method (e.g., Seber, 1982). For the 
multivariate case (Eq. 12), 

ˆ
ind N̂

 ( ) ( ) { }
{ }

{ }
{ }

2 2 2
2 2

ˆ ˆˆ ˆvar (0 | ) var ( )
ˆ ˆˆ ˆvar var

ˆˆ ( )(0 | )

 
 = = + 
  

ind ind

f c E s
N A D A D

E sf c
 

or (Eq. 14) 

 ( ) { }
2

2

1

ˆˆˆ ˆvar var (0 | )
2 =

 =  
 

∑
n

i i
i

AN s f
L

c  

However, knowledge of the covariates’ underlying distribution function is required to 
obtain approximate conditional variances and covariances of ˆ (0 | )f c .  
 

A robust approach to estimate the variance and confidence interval, valid for both 
parametric and nonparametric detection functions, is the nonparametric bootstrap 
resampling from multiple transects, provided that transects are independent (Buckland et 
al., 2001). In each of B bootstrap replicates, transects with their corresponding detected 
groups are resampled with replacement until the total line length is equal or 
approximately equal to the total surveyed length. Otherwise, a balanced bootstrap 
(Davison and Hinkley, 1997) can be used, in which each transect line is selected as many 
times as bootstrap replicates. The parameter of interest is then estimated at each replicate, 
and the variance is estimated as the sample variance of the bootstrap replicates. 
Approximate confidence intervals can be obtained with the percentile method, or derived 
alternative methods, like the BCa confidence intervals (Efron and Tibshirani, 1993). The 
BCa confidence intervals have better properties than the simple percentiles and produce 
more realistic confidence limits if data sets are not small. 

 
With parametric detection functions, the bootstrap allows for model selection 

uncertainty if, for example, selection of the model and explanatory covariates and model 
averaging based on AICc is carried out at each replicate. Another advantage of the 
bootstrap is allowing for model uncertainty when using regression methods to estimate 

. At each bootstrap replicate, tests for bias of the final M and LS regression 
estimates, selection of covariates explaining  by RFPE, and significant regression 

ˆ ( )E s
ˆ ( )E s
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slope can be carried out, following the procedure proposed in the robust-regression 
section. 

 
Modeling group size distribution 
 
 The observed group size distributions of many animal populations are highly 
skewed. In extreme cases, the distribution’s right tail is very long and discrete because of 
rarely encountered very large groups (Fig.1). These large groups significantly influence 
the shape of the group size distribution and its mean; missing just one very large group 
implies a substantial negative bias in abundance and its variance. Thus, simple bootstrap 
resampling of the observed values may fail to produce confidence intervals with optimum 
coverage and variances are usually underestimated. Improved bootstrap resampling can 
be obtained modeling the group size distribution and resample from it at each bootstrap 
replicate. 
 
 Parametric models or combinations of these (e.g., mixture models) can be used to 
model group size distributions. In general, a mixture of one or more Gamma or lognormal 
distributions for the lower group sizes and an extreme value distribution for the right tail 
will be reasonable options. A simple mixture of a lognormal and Pareto distributions is 

 ( ){ }210.5 log
1 1 1

1( | , , , ) (1 )e sf s e
s s

µ σ

ψ

ψπ µ σ ψ π π
σ

−− −

+

   = + −      
, 

with ψ  as the shape parameter of the Pareto distribution, π  is the proportion of the 
distribution to which the first parametric model (e.g. lognormal) is fitted, and s  1. ≥
 

Alternatively, group size distributions can be modeled with nonparametric 
methods that are more data oriented. A flexible approach (as used in the example 
analysis) is with adaptive kernel smoother density estimation 

 
1

1 1ˆ ( )
n

i

i i i

s sf s K
n h hλ λ=

 −
= 

 
∑ f , (20) 

with a Gaussian kernel K and local smoothing weights iλ . The weights select larger 
bandwidths in low-density areas and smaller ones in high-density areas, better modeling 
the distribution’s right tails. 
 

Following Silverman (1986), smoothing weights can be estimated as 

{ } 1/ 21( )i p if s Gλ
−−= , where ( )p if s  is a pilot density estimate, and G is the geometrical 

mean of ( )p if s . A reliable bandwidth h can be obtained with a plug-in method (Sheather 
and Jones, 1991) minimizing the asymptotic MISE. In this method, an asymptotically 
optimal h0  (e.g. from a normal approximation) is initially used to obtain  as  ĥ

 
1/5

1/5
4

( )ˆ
ˆ( ")σ

−  =  
  K

R Kh n
R f
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where R( ρ ) is , and substituting 2( )ρ∫ u du ˆ( ")R f  by ˆ( ")R f . The f” is replaced by a 

kernel estimate from the data. 
 

A less computationally involved option is non-adaptive kernel density estimation,  

 
1

1ˆ ( )
n

i

i

s sf s K
nh h=

− =  
 

∑f , 

with { }1/514(3 )h nσ −= , and Hogg’s (1979) median absolute deviation estimator 

{ } 1ˆ m ν −ˆ 0.6745iedian sσ = − , where ν̂  is the median of the sample of group sizes. This 
estimator of h takes into account the effects of the long tail distribution. 
 
Resampling procedure for group size 
 

At each bootstrap replicate, transect lines are selected with replacement, and the 
resampled group sizes are used as in a shrunk smoothed bootstrap (Davison and Hinkley, 
1997), generating new group size values from the cumulative distribution function 
obtained with Eq.20.  
 

For practical implementation, group size values are generated as *
*

i
i iI

s s h iλ ε= + , 

for i = 1,...n, where the *
iI  are independent and uniformly distributed on the integers 

1,...,n, which in this case are a sample from independent transect lines. The iε  are a 

random sample from ( )( ){ }1i is hλ −−K s , independent of the *
iI  (i.e. random deviates 

from a standard normal distribution). The  are rescaled by its variance, *
is

( )21

1
(

n

i
i

n s s λ−

=

− +∑ 2)ih , to have the same variance as the unsmoothed distribution. With 

the rescaled group sizes and the associated covariate data parameters of interest are 
computed at each replicate, and the variance and confidence interval are obtained as 
explained above. 

 
EXAMPLE ANALYSIS 

 
The proposed methods are applied to line transect data of the eastern spinner 

dolphin (Stenella longirostris orientalis) stock in the ETP collected during research 
cruises in 1998, 1999 and 2000. Methods of data collection followed standard protocols 
for line-transect surveys conducted by the Southwest Fisheries Science Center (Wade and 
Gerrodette, 1993; Kinzey et al., 2000). Searching effort was randomly allocated and 
stratified into four areas (Fig. 2): a core stratum (5,869,485 km2) centered on the main 
stocks of interest, an outer stratum (14,777,855 km2), a north coastal stratum (534,821 
km2), and a south coastal stratum (171,464 km2). Surveys were carried out from late July 
to early December with the oceanographic ships RV Endeavor from the University of 
Rhode Island and RV David Starr Jordan and RV McArthur from NOAA in 1998, and 
with the two NOAA ships only in 1999 and 2000. Perpendicular distances and additional 

 12



 

covariates were collected at each sighting from the ship’s flying bridge (over 10 m high), 
moving along the transect lines at a constant speed of 10 knots. Dolphin groups were 
primarily detected with pedestal-mounted 25x150 binoculars. Covariate data included 
total group size, species proportion in groups, detection cue (seabirds, water splashes, and 
animal body), association with seabirds (seabirds’ presence/absence), sea state as 
measured by the Beaufort scale, swell height in meters, time of the day, visibility in km, a 
weather factor (rain, fog, etc.), glare, and ship. Given the large variability in group size 
(Fig. 1) and the corresponding observers’ estimates, these were corrected for 
measurement error with calibration methods based on aerial photography (Barlow et al., 
1998). 

 
The proposed methods were compared using a sub sample corresponding to the 

combined effort and sightings data of the core and north coastal stratum for each year to 
estimate abundance and expected group size. Four analysis options were used: first, 
univariate parametric detection functions and expected group size estimated with the LS 
method, i.e. bias-correction was applied if the regression slope of loge group size against 
detection probability was significantly different from 0 (p<0.15); second, univariate 
detection functions with robust-regression group size estimate (Eq.7), if the slope was 
significant and tests indicated no bias of the final M-estimates; third, parametric 
multivariate analysis of the detection function in Eqs. 14 and 15; and fourth, 
nonparametric multivariate analysis of the detection function in Eqs. 14 and 15. 

 
Model selection and averaging was carried out in the parametric analysis. With 

nonparametric estimation there is not an obvious objective model selection method and 
thus, covariate effects were explored in a general way. In the simplest case of two 
covariates, perpendicular distance and group size, I used a likelihood ratio expression 
(Bowman and Azzalini, 1997) of the joint and marginal density functions, 

 ( )
( ) ( )

1

1 1

ˆ ,1 log ˆ ˆ
=

  =  
  

∑
n

i i

i i i

f y c
LRT

n f y f c
, (21) 

where c1 is group size or another covariate. The distribution of this test statistic was 
approximated by permutation. Permuted values of c1i were randomly associated to values 
of yi and, under the null hypothesis of independence of covariates, an empirical p-value 
was computed from the proportion of permuted statistic values higher than the observed 
value. 
 

Further testing was done by comparing bivariate distributions among groups with 
the statistic  

 , (22) { 2

1 1
1

ˆ ˆ( , ) ( , )
r

i i i i i i
i

m f y c f y c dyd
=

−∑ ∫∫ } 1c

)where the ( 1
ˆ ,i i if y c

)
 were the estimated densities for the different m groups, and 

( 1
ˆ ,i if y c  was the estimated joint density across groups. In the example dataset, bivariate 

density functions of perpendicular distance and group size between levels of different 
factors were compared. The statistic was constructed by numerical integration, using a 
two-dimensional grid of evaluation points, and comparisons were based on the bivariate 
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densities by groups. For example, with seabird association, the null hypothesis was of no 
differences between bivariate densities of perpendicular distance and group size with and 
without seabirds. Sightings with seabirds were sampled with replacement in an ordinary 
bootstrap procedure, and the resampling indices were used to obtain bootstrap data sets 
for sightings without seabirds. The empirical P-value was computed as indicated in the 
previous test, and the number of bootstrap replicates was 1000. 
 

Balanced bootstrap resampling was used with modeling of the group size 
distribution. The modeling of school size was with adaptive kernel smoothers (Eq. 20), 
with optimal bandwidths estimated with the plug-in Sheather-Jones method. In the 
parametric multivariate analysis, model selection and averaging was also carried out at 
each replicate to estimate the variance. In the nonparametric analysis, testing covariate 
effects (Eqs. 21, 22) at each bootstrap replicate was extremely inefficient and it was only 
carried out for an initial selection of potential covariates. The covariates with more 
significant effects were all modeled at each replicate. All bootstrap confidence intervals 
were estimated with the BCa method. 

 
Results 
 

Of the four methods tested, the analysis with parametric multivariate detection 
functions and the analysis with robust regression provided more consistent abundance 
estimates over time. The nonparametric analysis and the LS bias-correction analysis 
underestimated the mean group size and produced lower abundance estimates. The fit of 
the two regression methods to the example data sets is illustrated in Figures 3a-c. 

 
In 1998, the LS fit was significant (P=0.0408) according to the standard 

significance level used with this method, i.e., P < 0.15  (Thomas et al. 1998). The robust 
test, however, indicated that the LS estimate was significantly biased (P=0.0167), and 
most of the bias was caused by a very small group detected on the transect line (Fig. 3a, 
arrow). In contrast, the robust MM fit was not biased (P=0.8314). With it, the estimated 
slope was also significant (P=0.0819), but a lower correction was applied to the mean 
group size (Table 2). In 1999, the LS fit was also significant (P=0.0026) and found to be 
biased by the robust test (p=0.0082). The bias was caused again by an outlier (arrow in 
Fig. 3b). The MM regression fit was not biased (P=0.9563), and the slope was also 
significant (P=0.0056). Thus, a different mean group size correction was applied with 
each method (Table 2). In year 2000, neither regression fit was biased (LS: P=1; MM: 
P=0.4424), slopes were significant with the LS (P=0.1166) and non-significant with the 
MM method (P=0.3401), and the mean group size was only corrected with the LS analysis 
(Table 2). 

 
Looking into the bootstrap replicates of all years, the LS method often produced 

significant regression slopes of log-group size against g(y), leading to low mean group 
size estimates. The same slopes were lower or non-significant with the MM regression, 
which imposed a lower or no correction at all when the association between total group 
size and perpendicular distance was highly nonlinear. As a result, variance estimates were 
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high, with perhaps a slight positive bias, but were less biased than those obtained with the 
LS method. 

 
The association between perpendicular distance and the loge group size was 

further investigated with nonparametric bivariate density functions. The probability 
density contours of the 1998 data (Fig. 3d) did not indicate a clear linear association 
between variables, given the high aggregation of observations with average group size in 
the first 2 km off the transect line. In contrast, a likelihood ratio test (LRT Eq. 21, 1000 
permutations, empirical P<0.0001), indicated a definite correlation between 
perpendicular distance and group size. In agreement, the fit of a bivariate half-normal 
model with group size was better (AICc=280.96, n=99, Table 1a) than that of a univariate 
half-normal model (AICc = 284.96, Table 1a). Time of the day was also associated to 
perpendicular distance, as indicated by the LRT (P<0.0001), and the relatively good fit of 
the half-normal model with total group size and time of the day (∆ AICc = 2.611, Table 
1a). With model averaging, the mean parametric ˆ (0)f  was estimated as 0.3583 
(%CV=8.33). The mean nonparametric ˆ (0)f , modeled with total group size and time of 
the day, divided into four discrete categories because of low sample size, was estimated 
as 0.4271 (%CV=16.28). 

 
In 1999, the bivariate density contours indicated a positive correlation between 

perpendicular distance and log-group size (LRT, P<0.0001, Fig. 3e). In agreement, the 
bivariate half-normal model with total group size fitted the data better (AICc=227.59; 
n=70, Table 1b) than the univariate half-normal (AICc=232.04, Table 1B). The hazard rate 
model with swell height (AICc=228.54, Table 1b) was the second best model. In 
agreement, the association of perpendicular distance and swell height was significant 
(LRT, P<0.0001). The bivariate density of perpendicular distance and group size was 
different for sightings with seabirds than without seabirds (Eq. 22 statistic = 0.2586; 
P<0.0125). Thus, seabirds was retained as a covariate for the nonparametric model, 
together with group size. In the parametric case, the hazard-rate model with seabirds was 
the third best model (AICc=230.25, Table 1b). With model averaging, mean ˆ (0)f  was 
estimated as 0.2816 (%CV=11.54), and the nonparametric mean ˆ (0)f , modeled with 
total group size and swell height, divided into four discrete categories, and seabirds was 
estimated as 0.2911 (%CV=20.69). 

 
In year 2000, the bivariate density plot did not indicate a perpendicular distance 

effect on group size but there was a significant correlation (LRT, P<0.0001; Fig. 3f). 
Unlike in 1999, the bivariate densities were not different for sightings with and without 
seabirds (Eq. 22 statistic = 0.8429; P=0.5301). Differences in parametric detection 
function fit were small between the simple univariate half-normal model and bivariate 
half-normal models with swell height, total group size, and Beaufort (all AIC∆ c< 2, 
n=70; Table 1c). With model averaging, the parametric ˆ (0)f  was estimated as 0.3244 
(%CV=13.79). The nonparametric ˆ (0)f , modeled with total group size and swell height, 
divided into discrete categories because of the low sample size, was estimated as 0.3699 
(%CV=22.86). 
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 Nonparametric group size estimates were low and similar to the estimates 

obtained with the LS method (Table 2). Since these were driven by outliers and found to 
be biased by the robust test, it is likely that nonparametric estimates, with comparable 
values, were also negatively biased. In contrast, abundance estimates obtained with the 
two methods were quite different because of large differences in the ˆ (0)f  estimates. The 
robust MM-regression method produced group size estimates similar to those obtained 
with the multivariate parametric models. Since the differences in the ˆ (0)f  estimates 
produced with both methods were not large, abundance estimates were also similar 
(Table 2). 

 
Abundance estimates were more consistent over time using multivariate 

parametric methods. With these methods they were also precise, at reverse of 
nonparametric estimates, which were only precise in year 2000. Estimates obtained with 
robust regression methods were comparable to those obtained with parametric 
multivariate detection functions but were less precise, given the higher variability in 
mean group size estimates. Estimates obtained with LS regression estimates of mean 
group size were more unstable, less consistent and biased. 

 
In general, differences in effort and number of sightings made abundance 

estimates more precise in 1998. However, the numbers produced for Table 2 should only 
be used for comparison of the methods presented since they do not account for the entire 
distribution of the stock and can be misleading. Estimates for the complete Eastern 
spinner dolphin stock will be presented elsewhere. 

 
SIMULATION TESTS 

 
 I present a summary of simulations designed to examine the proposed estimation 
methods in terms of bias and precision. Data were generated to recreate the high 
variability in group size and size-dependent detection observed in line transect surveys of 
ETP dolphin stocks. The observed sample size was obtained from a Poisson distribution 
with E(n) = 150, the truncation distance W was 5 km, and L was calculated so that density 
was 0.95 groups/km2. The true distribution of group sizes was log-normal with mean 
µ=4.5 and σ2=1, and constrained to range from 1 to 2000 dolphins, so that the true E(s) 
was 146 dolphins. For simplicity, I simulated only three covariates: perpendicular 
distance, group size and a factor with two levels (e.g., presence or absence of associated 
seabirds).  
 

For a given group size, generated from a lognormal distribution, a level of seabird 
association was obtained from a binomial trial, and a perpendicular distance from a 
uniform distribution I(0, W). For the detection function, a trivariate exponential power 
series was used: 

 log log )1 1 2 2
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where y is perpendicular distance, c1 is group size, and c2 is presence or absence of 
seabirds, and the rejection method was used to select detected trials. Parameters 1α  and  

2α controlled the effects of group size and seabird association, and b is a shape parameter 
determining the width of a “shoulder” near the transect line. 
 

Data were simulated for two different sets of parameters iα , with b fixed at 1.5 to 
obtain a narrow left shoulder in the perpendicular distance histograms, as in the example 
data set. iα  was fixed at 0.2 imposing a moderate effect of group size on detection and 

2α  was either 0.05 or 0.2, representing low and high effects respectively. The results are 
based on 1000 simulations and 400 bootstrap replicates, and the analysis options are the 
same as in the example analysis. Computed statistics include point estimates, standard 
errors, percent relative bias ˆ100( ) /PRB θ θ θ= − , mean square error 

2ˆ) ( )ˆva (rMSE θ θ θ= + − , where θ is the parameter of interest, and observed coverage of 
bootstrap confidence intervals with 95% nominal coverage. 

 
Results 
 
 Group size estimates with the four methods were consistent with the true value. 
All were positively biased, with a slightly higher bias in those obtained with the 
parametric multivariate analysis and the robust regression analysis. The mean square 
error (MSE) was lower with the parametric multivariate analysis, which also produced 
more precise results. The nonparametric multivariate analysis had always the largest 
MSE (Table 3). 
 
 The LS analysis produced significant slopes 40 and 49% of the times with the two 
different sets of parameters respectively. The robust MM-regression analysis indicated 
that slopes were significant in 37 and 42% of the simulations. LS estimates were found to 
be biased 24 and 27% of the times, whereas bias in the final M-estimates only occurred 7 
and 11% of the times. In 22 and 23% of the simulations the LS slopes were biased but the 
M-slopes were not, and only in 4 and 7% of the simulations the M-estimates were biased 
but the LS estimates were not. In 7 and 8% of the simulations the LS analysis was biased 
and indicated significant slopes whereas the M-estimates were non-biased and indicated 
significant slopes. 
 The mean ˆ (0)f  estimates with univariate parametric functions, i.e. the estimates 
used with regression methods, had negative PRB, -3.3 and -0.4% for each set of 
parameters respectively, compared to the true f(0) of 0.300. The parametric multivariate 
analysis produced the less biased, -1.9 and 0.93%, and also the more precise mean ˆ (0)f  
estimates. In contrast, the nonparametric mean ˆ (0)f  estimates were positively biased, 2.2 
and 5.8% respectively, were the less precise, and had the largest MSE. 
 
 Density estimates were less biased with multivariate methods when the effect of 
the third covariate, in addition to that of group size, was high; i.e. 2α =0.20. As expected, 
both regression methods produced more biased density estimates in that case (Table 3). 
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When the effect of the second covariate was not strong, regression methods produced less 
biased density estimates. In general, density estimates with multivariate parametric 
methods were more precise and had lower MSE, whereas the estimates with 
nonparametric methods were the less precise and had higher MSE. 
 
 Bootstrap confidence interval coverage was high for most simulations, near the 
nominal 95%, and was similar with the smoothed and non-smoothed group size methods. 
In general, the smoothed bootstrap tended to give a slightly better coverage, but in most 
cases differences in coverage were marginal. Variances estimated with the smoothed 
group size distribution were only slightly larger than those with the unsmoothed 
distribution. This indicates that the discreteness in the right tail of the distribution was 
better sampled with the smoothing algorithm. However, the simulations were not 
designed to capture the edge effect of the right tail; i.e. group sizes were constrained to a 
maximum value of 2000. In agreement, no values substantially larger than 2000 were 
found upon examination of the smoothed bootstrap distributions. 
 

DISCUSSION 
 

Linear regression using least squares to model group size can be very sensitive to 
the effects of just a single observation (Fig. 3a,b) and produce biased estimates. Besides, 
using a loge transformation not always ensures that group size associates linearly with 
detection probability, perpendicular distance or other covariates. Thus, imposing a linear 
correction with highly variable group sizes, low sample size and outliers may not always 
be adequate; abundance estimates will be biased and variable. Robust regression is also 
constrained by the linearity in the relationship between covariates but it accounts 
effectively for outlier effects and will produce better results than the LS regression. 

 
Robust regression also depends on the probability level imposed to test for a 

statistically significant slope. It can be argued, as it is done to support the use of the LS 
method (Thomas et al., 1998), that the linear modeling will efficiently correct group size 
bias regardless of finding a significant slope. In the light of the results of this paper, this 
practice also requires the testing for bias in the outcomes of whatever linear modeling 
method of choice. The methods I propose are an example of how this can be easily 
achieved. 

 
The covariate analysis of the detection function successfully reduces 

heterogeneity and it should be considered a priori, even if only for testing covariate 
effects like size dependent detection. In most cases, the parametric analysis is likely to 
improve density and abundance estimates with an adequate model selection and 
reasonable sample sizes. It is always to be preferred to stratification or post-stratification 
of the data because it models heterogeneity directly. For instance, it is very useful to test 
for geographic strata, year or species when these effects are modeled as covariates. 
Model selection provides an objective statistical criterion to combine strata for estimation 
when precision is to be gained from pooling. 
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A down side of considering multiple covariates is multi-model inference with a 
very large set of good candidate models. This is the case of the example data set for year 
2000, with 17 models with ∆AICc smaller than 4. Since the purpose of the modeling is 
inference, it may be justified to use them all in model averaging because they have 
substantial or good support (Burnham and Anderson, 2001). However, the amount of 
computing, especially in the bootstrap resampling, is perhaps too high to justify using all 
the models and a sensitivity analysis can help deciding whether considering just models 
with ∆AICc ≤ 2 is a good alternative. Here is also where the science of the problem 
should be considered. For instance, if a time series is to be analyzed and further used in a 
population modeling, like the example data set, it is arguable that the same family of 
parametric detection function models should be used for each year for consistency. 
Further, in cases like the example data set, research on the problem of why the data is 
spiked may discard or justify the use of models that overfit, such as the hazard rate. 

 
The covariate analysis requires large sample sizes to obtain reliable results. 

Multivariate models will seldom fit well sparse and small datasets unless some particular 
covariate effect is high. This problem will be exacerbated with nonparametric methods, 
where every covariate is an additional dimension to the analysis. As noted by Silverman 
(1986), as the number of dimensions increases, accuracy and precision decrease 
exponentially. An alternative nonparametric method could be Chen’s (1999) local kernel 
smoother estimator modified for the conventional case. Its advantage is that it is 
univariate, unlike the method used in this paper, and perhaps is more efficient. However, 
it also requires discretization of continuous covariates and this might not be an optimal 
practice when sample size is low. Moreover, there is not an obvious selection process to 
eliminate covariates with marginal effects. Ultimately, it is always better to conduct pilot 
surveys and address sample size issues during the survey design, so that the analysis can 
better accommodate the needs of a particular data set. 

 
An additional common problem with nonparametric estimation is the lack of 

smoothness of perpendicular distances near the transect line. This is also a problem with 
kernel smoothers with adaptive bandwidth selection (Chen, 1996), and it was found in the 
simulations and also in the example data. In the simulations, data sets were deliberately 
spiked to mimic the example data, and it was seen how kernel smoothers overestimated 
the mean ˆ (0)f . In the example analysis, however, it is not clear whether the spike was 
purely a sampling artifact or if the true detection function was in fact spiked. In any case, 
data oriented models like the hazard-rate or kernel smoothers tended to fit the spike and 
produce higher estimates of ˆ (0)f . As noted by Buckland et al. (2001) models like the 
hazard-rate produce positively biased ˆ (0)f  estimates in these cases. Thus, a family of 
more flexible detection functions can be used as potential starting candidates. Some 
assessment of the fit near 0 and of meeting the shape criterion (Burnham et al., 1980) by 
models will be helpful. Good candidate models can be simple parametric ones as 
proposed in this paper, their extension with expansion series (Marques, 2001), or the 
extension with other semi-parametric approaches like in the univariate case (Barabesi, 
2000). On the other hand, kernel smoothers have good properties, like the ability of 
dealing better with local nonlinearities. Adaptive kernel smoothers could perhaps be 
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ameliorated with better methods of bandwidth selection (Barabesi and Fattorini, 1994, 
Gerard and Schucany,1999) and, with an objective covariate selection method, become 
good analysis tools. 

 
The modeling of group size slightly improved the coverage of the confidence 

intervals. It is arguable that such computationally involved method should be used on a 
regular basis and it may not be justified unless very large schools occur. However, any 
analysis will be problematic with highly variable group sizes as in the example data set. 
Thus, modeling the group size distribution is a good tool for a sensitivity analysis and 
better assess the effect of very large groups. In particular, the modeled distributions can 
be used to assess the extent of the right tails and assess if these are representative of the 
observed data when resampling.  

 
The examination of the distribution tails can also be helpful when fitting 

parametric detection function models. Differences in abundance can be substantial by 
including or excluding just a single large group size. This happens, for example, by right-
truncation of perpendicular distances. Right-truncation is especially recommended when 
using Horvitz-Thompson-like estimators, as in Eq. 14, because the ˆ (0 | )f c  estimates 
enter the estimator as part of the inclusion probabilities, and may bias the results if these 
are too small (Borchers et al., 1998; Marques, 2001). It is also true that if detection is 
highly size-biased, abundance estimates may be more sensitive to truncation of very large 
groups, usually detected at very large distances. In some cases, even a very large group 
on the right edge of the selected truncation distance can make a difference. Thus, 
truncation is a trade-off of good inclusion probabilities and good representativeness of 
large group sizes. 

 
Dealing with highly variable group sizes, the LS regression analysis of mean 

group size and the multivariate nonparametric methods should be used with caution. Both 
methods can easily produce biased estimates. In the nonparametric analysis, the lack of 
good fit to short perpendicular distances is the main cause of bias, and further 
development is needed to take advantage of the good aspects of the method. In the case 
of the LS regression, the sensitivity to outliers is of major concern. Even if the method 
can work well, as seen in the simulations, it is likely that the simulated data did not 
recreate the severity of outlier effects, as in the example data set, and tests for bias should 
be common practice when analyzing real data. Robust regression techniques can be very 
helpful to test for such effects and, if necessary, can be used for inference. However, 
robust regression will tend to produce less precise abundance estimates, given the high 
variability of mean group size estimates using this method. In addition, the estimates can 
be biased if the effect of a covariate other than group size is strong. Thus, parametric 
multivariate methods, which tend to produce more precise estimates, will provide the best 
trade-off of bias and precision. 
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Table 1a-c. Parametric detection function analysis of perpendicular distance (pd) and 
additional covariate data for 1998, 1999, and 2000. Models considered are the half-
normal, the exponential power series and the hazard rate. Potential covariates (see text for 
details) are total group size (gs), time of the day (time), swell height (sh), sea state 
measured by Beaufort scale (Bf), association with birds (bi), sighting cue (cue) and ship 
(ship). Model selection is based on the AICc statistic. ∆AICc is the difference between the 
a model’s AICc and the lowest AICc. Estimates of ˆ (0)f  are provided for comparison 
among models, and average estimates are provided in Table 2. AICcw are the weights of 
each model used in the model averaging. 
 
Table 1a. Eastern spinners dolphins in 1998. 

Model AICc ∆AICc AICcw ˆ (0)f  

Half-normal (pd+gs) 280.96 0 0.542 0.3584 
Half-normal (pd+gs+time) 283.36 2.611 0.147 0.3689 
Half-normal (pd) 284.96 4.004 0.073 0.3544 
Exponential-power (pd) 285.23 4.274 0.064 0.4046 
Hazard-rate (pd) 285.85 4.894 0.047 0.4176 
Exponential-power (pd+gs) 285.91 4.951 0.045 0.3122 
Hazard-rate (pd+time) 288.08 7.122 0.015 0.4156 
Half-normal (pd+sh) 288.13 7.174 0.015 0.3429 
Exponential-power (pd+time) 288.31 7.350 0.014 0.3683 
Hazard-rate (pd+bi) 289.27 8.310 0.008 0.3348 
Half-normal (pd+gs+sh) 289.88 8.903 0.006 0.3477 
Hazard-rate (pd+gs) 291.24 10.279 0.003 0.2821 
Exponential-power (pd+bi) 291.53 10.570 0.003 0.3099 
 
Table 1b. Eastern spinners dolphins in 1999. 

Model AICc ∆AICc AICcw ˆ (0)f  

Half-normal (pd+gs) 227.59 0 0.377 0.2861 
Hazard-rate (pd+sh) 228.54 0.954 0.234 0.2013 
Hazard-rate (pd+bi) 230.25 2.665 0.099 0.2015 
Exponential-power (pd) 230.33 2.746 0.095 0.2049 
Hazard-rate (pd+time) 231.26 3.669 0.060 0.2065 
Half-normal (pd) 232.04 4.456 0.041 0.2491 
Half-normal (pd+ship) 232.50 4.950 0.032 0.2640 
Half-normal (pd+sh) 233.96 6.376 0.015 0.2557 
Half-normal (pd+time) 234.12 6.535 0.014 0.2488 
Hazard-rate (pd) 235.64 8.056 0.007 0.2753 
Half-normal (pd+bi) 235.65 8.060 0.007 0.2664 
Half-normal (pd+bf) 236.14 8.552 0.005 0.2650 
Half-normal (pd+time+ship) 236.88 9.291 0.004 0.2803 
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Table 1c. Eastern spinners dolphins in 2000. 

Model AICc ∆AICc AICcw ˆ (0)f  

Half-normal (pd) 214.99 0 0.142 0.3159 
Half-normal (pd+sh) 215.60 0.606 0.105 0.3175 
Half-normal (pd+gs) 216.20 1.202 0.078 0.3187 
Half-normal (pd+bf) 216.77 1.778 0.058 0.3241 
Exponential-power (pd) 216.94 1.932 0.054 0.2952 
Half-normal (pd+time) 217.05 2.059 0.051 0.3163 
Half-normal (pd+ship) 217.31 2.312 0.045 0.2998 
Half-normal (pd+sh+bf) 217.39 2.399 0.043 0.3364 
Half-normal (pd+bi) 217.55 2.553 0.040 0.2938 
Exponential-power (pd+sh) 217.73 2.733 0.036 0.2773 
Hazard-rate (pd) 217.74 2.750 0.034 0.2544 
Half-normal (pd+sh+time) 217.79 2.795 0.035 0.3229 
Hazard-rate (pd+sh) 217.87 2.876 0.034 0.2519 
Hazard-rate (pd+gs) 218.24 3.246 0.028 0.2577 
Exponential-power (pd+gs) 218.25 3.257 0.028 0.2993 
Half-normal (pd+sh+gs) 218.35 3.358 0.026 0.3159 
Exponential-power (pd+time) 218.99 3.997 0.019 0.2910 
Exponential-power (pd+bf) 219.22 4.228 0.017 0.3051 
Half-normal (pd+cue) 219.32 4.324 0.016 0.3061 
Exponential-power (pd+ship) 219.39 4.399 0.016 0.2999 
Half-normal (pd+sh+ship) 219.43 4.437 0.015 0.2979 
Half-normal (pd+sh+bi) 219.48 4.483 0.015 0.2967 
Exponential-power (pd+bi) 219.64 4.650 0.014 0.2938 
Hazard-rate (pd+time) 219.76 4.762 0.013 0.2574 
Hazard-rate (pd+ship) 220.02 5.024 0.011 0.2828 
Hazard-rate (pd+bf) 220.50 5.508 0.009 0.2974 
Hazard-rate (pd+bi) 220.53 5.539 0.009 0.2729 
Half-normal (pd+sh+cue) 221.90 6.904 0.004 0.2934 
Hazard-rate (pd+cue) 222.45 7.461 0.003 0.2884 
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p.d.f. at 0 group size Abundance 
Year  method ˆ (0)f  % CV s s  

(%CV) 
ˆ ( )E s  %CV  (95% C.I.) N̂ N̂  %CV  (95% C.I.) 

Conventional + LS 111.0 15.7 (82.3-149.0) 457277 22.92 (271924 - 682562) 

Conventional + MM 
0.3576  8.33

121.5 16.8 (82.5-157.0) 500297 24.42 (286524 - 745214) 

MV parametric 0.3583 8.33 122.3 12.9 (91.1-148.1) 504720 21.75 (292025 - 719462) 

1998 
n = 99 
L=23911 

MV nonparametric 0.4271 16.28 

130.6 
(12.66) 

103.0 19.0 (72.5-151.7) 506663 24.57 (320963 - 860768) 

Conventional + LS 83.0 18.95 (60.5- 120.9) 249521 26.25 (144900 - 420512) 

Conventional + MM 
0.2451  8.00

107.5 24.63 (71.9- 168.9) 323285 32.52 (177452 - 593821) 

MV parametric 0.2816 11.54 99.1 19.02 (65.4-133.9) 342126 26.91 (204797 - 592131) 

1999 
n = 70 
L=17756 

MV nonparametric 0.2911 20.69 

110.6 
(17.22) 

82.1 25.59 (46.5-133.4) 293258 35.61 (148824 - 597827) 

Conventional + LS 108.7 16.95 (79.7-149.5) 422756 26.04 (266149-754605) 

Conventional + MM 
0.3224  13.79

125.4 22.05 (94.3-261.3) 487885 31.41 (324160-1281110) 

MV parametric 0.3244 13.79 123.7 18.23 (94.6-195.1) 484174 26.55 (325944-889593) 

2000 
n = 70 
L=17991 

MV nonparametric 0.3699 22.86 

125.5 
(18.74) 

105.7 17.04 (74.4-146.2) 472026 26.45 (272692-771130) 

Table 2. Point estimates, percent coefficient of variation (CV), and 95% BCa smoothed bootstrap confidence limits of  perpendicular 
distances probability density evaluated at 0, ˆ (0)f , expected group size, ˆ ( )E s , and abundance of eastern spinner dolphins in the core 
and North coastal area of the eastern tropical Pacific ocean. Estimates were computed with data from 1998, 1999, and 2000, using 
conventional analysis with least squares (LS) regression, and with robust (MM) regression, and using parametric and nonparametric 
multivariate (MV) detection functions. s  is the mean group size, n is sample size, L total line length in km, and the size of the area 
surveyed was 6404306 km2. Parametric MV uses model averaging of ˆ (0)f  (Tables 1A-C). 



 

Table 3. Point estimates, standard errors (SE), percent relative biases (PRB), mean square 
errors (MSE) and 95% confidence interval coverages for density of individuals and 
expected mean group size estimated with different methods. DLS and  are estimated 
with univariate detection function and LS group size regression on detection probability; 
D

ˆ
LSS

MM and ˆ
MMS  are estimated with univariate detection function and robust (MM) group 

size regression on detection probability; DCOV and  are estimated with parametric 

multivariate detection functions; and D

ˆ
COVS

KS and ˆ
KSS  are estimated with nonparametric 

multivariate detection functions. NB corresponds to the simple bootstrap confidence 
intervals and SB corresponds to the coverage with smoothed bootstrap method. Data is 
simulated with an exponential power series detection function, with W = 5 km, true group 
size of 146 individuals, density of groups of 0.95 group/km2, and density of individuals 
of 138.7 ind./km2. 
 
 scale parameters   scale parameters 
 α1 = 0.20 

α2 = 0.05 
α1 = 0.20 
α2 = 0.20 

  α1 = 0.20 
α2 = 0.05 

α1 = 0.20 
α2 = 0.20 

ˆ
LSD  136.9 132.98  ˆLSs  149.4 150.64 

SE 0.98 1.03  SE 0.85 0.87 
PRB -1.29 % -4.12 %  PRB 2.33 % 3.18 % 
MSE 490.5 568.0  MSE 369.6 400.9 

NB 88.8 % 92.8 %  NB 97.0 % 92.0 % coverage SB 90.4 % 94.8 %  coverage SB 97.2 % 92.8 % 
       
ˆ

MMD  139.8 134.43  ˆMMs  152.58 152.30 
SE 0.99 1.05  SE 0.85 0.90 
PRB 0.78 % -3.07 %  PRB 4.51 % 4.32 % 
MSE 495.5 575.78  MSE 408.2 445.3 

NB 94.4 % 94.8 %  NB 95.2 % 93.2 % coverage SB 95.6 % 93.6 %  coverage SB 94.8 % 95.0 % 
       
ˆ

COVD  145.5 139.94  ˆCOVs  156.75 156.47 
SE 0.89 0.92  SE 0.69 0.69 
PRB 4.89 % 0.89 %  PRB 7.36 % 7.17 % 
MSE 440.55 426.79  MSE 350.7 350.5 

NB 93.6 % 94.8 %  NB 93.2 % 94.8 % coverage SB 96.4 % 95.8 %  coverage SB 92.8 % 94.4 % 
       
ˆ

KSD  143.9 138.56  ˆKSs  148.9 149.75 
SE 1.13 1.17  SE 0.88 0.93 
PRB 3.73 % -0.10 %  PRB 2.01 % 2.57 % 
MSE 675.2 689.93  MSE 394.0 442.4 

NB 93.2 % 93.2 %  NB 95.2 % 96.0 % coverage SB 94.0 % 94.6 %  coverage SB 95.2 % 94.4 % 
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Figure 1. Group size distribution of eastern spinner dolphins (Stenella longirostris 
orientalis) in the eastern Tropical Pacific Ocean during 1998, 1999 and 2000. The fitted 
line is an adaptive bandwidth kernel smoother density estimate. 
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Figure 2. Map of the study areas of the example data set. The total survey area contains 
four strata, Outer, Core, North Coastal, and South Coastal. For illustration of the 
methods, the example subset uses data from the Core and North Coastal strata combined. 
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Figure 3. Association between perpendicular distance and eastern spinner dolphin group size on each year as measured by linear 
regression (A-C), and by a bivariate probability density surface (D-E). Panels A to B show a least squares (continuous) and an MM 
robust regression fit (dashed), with arrows indicating significant outliers. Panels D to E, show bivariate density contours, indicating 
the percentage of the data points contained. 
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APPENDIX A 
 

Response to CIE reviewer comments 
 

The manuscript reporting the new analysis tools especially developed for the IDCPA project 
has been improved according to modifications suggested by reviewers and the final version is included 
as a Technical report. 
 
Reviewer #1: R. Mohn. Dept. Fisheries & Oceans, Bedford Inst. Oceanography, Dartmouth, N. S., 
Canada. 
Reviewer #2: P. Medley. Consultant, Alne, UK. 
 
 
Enhancement of Simulations 
 

All the simulations included in the technical report were repeated and additional ones carried 
out to address the points suggested by the reviewers. The technical report now contains further 
description of the simulation results. In particular, it is clarified that contrary to R. Mohn’s comment, 
the selection of covariates was to mimic the real data. In the previous simulation tests, main covariates 
were: perpendicular distance, group size and a two level factor (e.g. bird association). These covariates 
were commonly selected in the data analysis. Now this can be seen more clearly in the technical report. 

 
Software reliability.-- Given the intensive nature of the computations, a limited number of the 

simulations were also repeated using different algorithms for maximum likelihood estimates of 
parametric models. This was the part of the analysis most sensitive to errors. In particular, Buckland’s 
Newton-Raphson algorithm for fitting density functions with expansion series (Buckland 1992) was 
implemented, and results were compared to the quasi-Newton algorithm in the S-Plus package 
(MathSoft Inc. 1999), used for the analysis. Results showed similar detection function parameter 
estimates, and a sensitivity analysis indicated that errors in f(0,c) estimates (probability density 
function of perpendicular distances and additional covariates evaluated at 0) attributable to the 
minimization algorithm were minimum, and were similar using both algorithms. 

The new analysis, as reported in the technical report, includes parametric model selection and 
averaging based on the low sample AIC version (QAIC). In practice, this increases computation time a 
lot but a sensitivity analysis indicates that this method greatly improves the final abundance estimates. 
Model selection uncertainty in f(0,c) now accounts for the effects of multiple covariate models, and the 
best combination of models is used to produce averaged f(0,c) estimates. Model averaging takes into 
account estimates based on conventional univariate models, extensively tested (i.e. program 
DISTANCE). Our software, especially developed for this analysis, produces the same estimates for 
these simple models, but also produces estimates using the new covariate models, including multi-
model selection and averaging. 

Computing the final stock abundance estimates, many minor errors in the code related to 
different parts of the complex estimation algorithm were detected and corrected. Errors mostly affected 
the f(0,c) estimates when sample size for estimation was low. In particular, to obtain reliable estimates 
for the target species, proration of abundance of unidentified species required independent estimates of 
more than 7 dolphin stocks. The best solution for reducing errors by stock and year was investigated, 
and the code was implemented and tested accordingly. Tests to detect further errors were run at all 
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moments to ensure the most possible reliable results. In particular, tests on the bootstrap analysis of 
variability were extensively repeated until consistency in the results between stocks and years was 
found. 

 
 Impact of “rare large events”.-- Rare large events are outlier school, of very large size, 
encountered at large perpendicular distances (pd). The need to impose a truncation pd to fit 
multivariate parametric models may leave some very large schools out of the analysis, simply because 
these are detected at the right edge of the truncation distance (W). These may lead to underestimate 
mean school size. As noted in the technical manuscript the Horvitz-Thompson type abundance 
estimator requires further truncation than univariate conventional estimators to avoid bias. To decide 
what is the appropriate truncation distance, the inclusion probabilities, 1/Wf(0,c), should be above 0.1-
0.2. In our analysis, all large school sizes could be included, conditional on their detection pd. Further, 
a sensitivity analysis using the proposed smoothed bootstrap algorithm with school size modelling 
suggests that the variance was not underestimated, even when very large schools were discarded. 
Appropriate discussion is included in the technical report. 
 
Correlation among covariates and model  
  

Modelling covariate effects on a log-linear scale did not reduce possible collinearities; 
however, inclusion of collinear covariates was avoided, based on an ad hoc analysis of covariate 
effects. This analysis was independent, and based on methods similar to those reported in Barlow et al. 
(2001), with particular examination of matrices of covariances between covariates. Moreover, model 
selection based on QAIC provides an objective covariate selection. At this point of the analysis, the 
problem of relationships between covariates was not found to be a source of structural error in models 
and/or bias, and any potential bias should be small. Future research on the subject should definitely 
improve the selection process. 
 
Model selection 

 
Model selection and inference was based on multiple models including different sets of 

covariates affecting delectability by stock and year; however, all the models were based on the half-
normal key to provide more consistent estimates for the posterior population modelling. Multi-model 
selection and averaging was superior in producing consistent results than simply imposing the same 
models (i.e. same key and covariates across years), because the resulting f(0,c) estimates were sensitive 
to covariate effects particular to stock and year. Point and variance estimates were improved in that 
they accounted for model selection uncertainty and reduction in heterogeneity, and model selection 
based on QAIC reduced the overfit and the chances of structural errors because of low sample size. 

 
Modeling of detection distances.—Medley proposes an alternative method for modelling 

detection distances, which could be used as a base for future improvements. The method has potential 
merits, although has great similarities with methods for radial (detection) distance methods proposed in 
the past. The reliability of these methods has been proven to be much inferior to methods purely based 
on perpendicular distances (Buckland et al. 2001), and revisit such methods at this point of the present 
exercise was deemed impractical and unnecessary. 
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